黎曼猜想的证明会颠覆区块链的安全吗?

最近,一则关于黎曼猜想的新闻在学术界引起了相当大的轰动——89岁的诺贝尔奖和菲尔兹奖获得者迈克尔·阿提亚爵士(Sir Michael attiya)在海德堡奖获得者论坛上发表演讲,声称证明了波恩哈德·黎曼在1859年提出的黎曼猜想。

作为数学领域最大的瓜之一,各行各业的人都表示愿意开始吃。一些致力于区块链研究和报道的媒体也不忘扫屏幕,声称黎曼猜想的证据可以破解密码系统,颠覆区块链的安全,甚至区块链的未来都会被摧毁。

那么,黎曼猜想与块链有什么关系呢?作者试图在这篇文章中为你解答。

黎曼猜想是什么?说到数学家,黎曼可能没有高斯、牛顿和阿基米德有名。

在作者看来,这不是由于贡献,而是因为黎曼的研究没有写进中小学数学教科书,所以不能广为人知。

更有趣的是,黎曼的许多研究结果与我们的一些传统认知相反。

举一个典型的例子,我们将在高中数学课上得出以下结论:给定一条直线,通过这条直线之外的任何一点,只有一条直线与之平行。

然而,李曼认为,如果一个人越过一条直线以外的点,他就找不到一条平行线。

基于这一观点,黎曼构建了一个完美的黎曼几何理论,并成为爱因斯坦广义相对论的数学基础之一。

在黎曼辉煌的42年人生中,他不仅留下了许多重要的研究成果,还留下了一个著名的未解问题——黎曼猜想。

这是第二届国际数学家大会提出的“20世纪数学家应该努力解决的23个数学问题”之一。

那么,黎曼猜想是什么?除了复杂的数学公式和理论之外,我们只需要看一下黎曼猜想首先提出的论文题目:关于小于给定值的素数。

也就是说,不管这些天才数学家定义了什么样的复杂数学公式,提出了什么样的复杂数学定理,黎曼猜想的最终目标实际上是非常容易理解的——它给出了一个数学公式,描述了有多少素数小于任何给定的自然数。

令人困惑的是,这样一个数学公式会颠覆密码学的安全性吗?黎曼猜想将颠覆密码学的证明?从密码学的研究范围来看,密码学包括两个相互依赖和对立的内容:一是密码使用方法,即如何用密码对信息进行加密,以达到信息隐藏的目的;另一种是密码攻击方法,即如何在不知道密码的情况下解密加密机制,实现加密信息的解密。

如果黎曼猜想的证明对加密方法造成了安全隐患,那么肯定有两种情况:一是加密方法有问题,即它所依赖的数学原理与黎曼猜想完全冲突;第二种情况是黎曼猜想的证明可以促进密码攻击方法的进步,从而提出一种更强大的密码解密方法。

从密码方法的角度来看,数学是重要的理论基础。许多加密算法依赖于严格的数学定理,这反映在许多加密方法中。然而,现有的方法与素数理论无关。RSA方法是最常用的方法。它于1977年提出,并已成为银行和其他金融机构使用的标准加密方法。这也是各种媒体声称受黎曼猜想影响的一种方法。

这种方法依赖于以下原则:给定两个大质数,很容易计算它们的乘积;然而,很难将他们的产品分解成主要因素。

在本文中,“非常容易”是指计算机可以快速计算,“非常困难”是指即使使用大量计算资源,也无法在合理的时间(10,000年)内获得结果。

从逻辑上讲,能够计算小于自然数的质数和能够快速将自然数分解成质数之间没有直接冲突。

然而,椭圆曲线加密技术经常在区块链技术中使用。该方法所依赖的数学原理是离散对数问题,它主要基于对数运算和余数运算,与黎曼猜想无关。

从密码攻击方法的角度出发,以RSA为例,一些方法利用RSA加密机的当前曲线解密密码。这种方法依赖于加密的密码信号和当前信号之间的关系,这显然与素数理论无关。另一种方法是数学分析攻击,即产品的素因子分解。目前,没有更好的方法来解决这个问题,除了暴力破解。因此,现有的方法大多是从硬件层面解决的,如依靠量子计算机的并行处理来提高运算速度。然而,量子计算机的硬件设计和黎曼猜想基本上是两个不同的问题

也就是说,无论从密码使用的角度还是从密码攻击的角度来看,黎曼猜想都与密码系统的安全性无关。

根据黎曼猜想,可以创新一种全新的密码攻击吗?这种可能性微乎其微。

毕竟,黎曼猜想已经提出了150多年,各种主流加密算法也已经提出了几十年。到目前为止,还没有有效的方法来破解基于黎曼猜想的各种加密方法。

通过以上分析,我们可以知道黎曼猜想的证明对密码学的发展影响不大,也不会影响区块链技术的安全性。

最后需要指出的是,目前在区块链的各类应用中,暴露的安全隐患更多是由于程序员撰写智能合约代码不慎而产生的漏洞,其所使用的椭圆曲线密码机制已经经过三十多年的检验,至今还没有有效的破译方法。最后,应该指出,在区块链的各种应用中,暴露的安全风险主要是由粗心的程序员编写智能合同代码造成的。程序员使用的椭圆曲线密码系统已经测试了30多年,目前还没有有效的解码方法。

发表评论

电子邮件地址不会被公开。 必填项已用*标注